学术动态
计算机科学技术名家讲座(八)——许东
科研办 发布时间:2019-05-30 11:07  点击:

报告题目:Deep Neural Network Architecture Design

报告时间:201964日 上午900

报告地点:计算机科学与技术学院A521

报告人:许东 教授

报告人简介

Dong Xu is Shumaker Endowed Professor in Department of Electrical Engineering and Computer Science, Director of Information Technology Program, with appointments in the Christopher S. Bond Life Sciences Center and the Informatics Institute at the University of Missouri-Columbia. He obtained his PhD from the University of Illinois, Urbana-Champaign in 1995 and did two years of postdoctoral work at the US National Cancer Institute. He was a Staff Scientist at Oak Ridge National Laboratory until 2003 before joining the University of Missouri, where he served as Department Chair of Computer Science during 2007-2016. His research is in computational biology and bioinformatics, including machine-learning application in bioinformatics, protein structure prediction, post-translational modification prediction, high-throughput biological data analyses, in silico studies of plants, microbes and cancers, biological information systems, and mobile App development for healthcare. He has published more than 300 papers. He was elected to the rank of American Association for the Advancement of Science (AAAS) Fellow in 2015.

 

报告内容简介

To address diverse applications, many families of network structures have been developed in deep learning, such as deep neural networks, convolutional neural network (CNN), recurrent neural networks (RNN), and generative adversarial network (GAN). In addition to these basic network architectures, a number of advanced architectures and combinations of different architectures are also introduced. In this lecture, I will cover the following major types of advanced architectures: (1) residual/dense networks; (2) inception networks; (3) light networks; (4) R-CNN; (5) graph neural networks; and (6) hybrid networks. These advanced architectures often significantly improve the performance of various applications, as demonstrated in many research benchmarks and big data open challenges. I will discuss design principles of these deep learning networks. I will also address building and optimizing networks using auto-ML and evolutionary approaches.

 

 

主办单位

吉林大学计算机科学与技术学院

吉林大学软件学院

吉林大学计算机科学技术研究所

符号计算与知识工程教育部重点实验室

海战场攻防对抗仿真技术教育部重点实验室

吉林大学国家级计算机实验教学示范中心

吉林大学计算机科学与技术学院 版权所有 © 2017

地址:吉林省长春市朝阳区前进大街2699号吉林大学前卫南区计算机楼 邮编:130012